liste
liste1

6. Sınıf Matematik Prizmalar Konu Anlatımı

Ekleyen: ilketkinlik | Okunma Sayısı: 5551

PRİZMALAR

Prizma Nedir?
Birbirine eşit ve paralel iki düzlemin köşelerinin birleşmesi sonucu elde edilen cisme prizma denir.

Dik Prizma Nedir?
Tabanları herhangi bir çokgensel bölge,yan yüzleri dikdörtgensel bölge olan cisimlere dik prizma denir.Dik prizmalarda tabanları birleştiren yanal ayrıtlar tabanlara diktir.
Tabanları düzgün çokgensel bölge olan dik prizmalara düzgün dik prizmalar denir.
Prizmalar tabanlarına göre isimlendirilir.Üçgen prizma,kare prizma,dikdörtgenler prizması,altıgen prizma,beşgen prizma gibi...

Cisim Köşegeni: Prizmada karşılıklı alt köşeyi üst köşeye birleştiren uzunluğa cisim köşegeni denir.Küpte 4 tane cisim köşegeni vardır.


Dik Prizmaların Özellikleri
1) Tabanları birbirine eş ve paraleldir.
2) Yan yüzleri dikdörtgensel bölgelerdir.
3) Herbir köşede kesişen ayrıtları birbirine diktir.
4) Yanal ayrıtlar aynı zamanda yüksekliktir.

Dik Prizmaların Alanları
Dik prizmaların alanı demek prizmanın dış yüzeyinin kapladığı alan demektir.Tüm dik prizmaların alanı için aşağıdaki formül kullanılır.
Alanı=2.(taban alanı)+(yükseklik).(taban çevre uzunluğu)
Küpün Alanı:
A=6.a
Dikdörtgenler Prizmasının Alanı:
A=2.(a.b+a.c+b.c)

Dik Prizmaların Hacimleri
Dik prizmaların hacmi demek içine doldurulan sıvının kapladığı yer demektir.Tüm dik prizmaların hacmi için aşağıdaki formül kullanılır.
Hacim=(taban alanı).(yükseklik)
Küpün Hacmi:
V=a.a.a
Dikdörtgenler Prizmasının Hacmi:
V=a.b.c

Küp
6 Tane karesel bölgenin birleşmesi sonucu meydana gelen kapalı kutu şekline küp denir.6 Tane birbirine eşit kare vardır.Tavla zarını örnek verebiliriz.

Kare Dik Prizma
2 Tane karesel,4 tane dikdörtgensel bölgenin birleşmesi sonucu meydana gelen prizmaya kare dik prizma denir.Gökdelenleri örnek verebiliriz.

 

 

 

 

 

 

 

 

 

Kare Dik Prizmanın Özellikleri:
Yüz Sayısı=6
Yanal Yüz Sayısı=4
Taban Sayısı=2
Köşe Sayısı=8
Yanal Ayrıt Sayısı=4
Taban Ayrıt Sayısı=8
Toplam Ayrıt Sayısı=12
Tabanlar kare,yanal yüzler dikdörtgendir.

Dikdörtgenler Prizması
6 Tane dikdörtgensel bölgenin birleşmesi sonucu meydana gelen prizmaya dikdörtgenler prizması denir.Kibrit kutusunu örnek verebiliriz.

Dikdörtgenler Prizmasının Özellikleri:
Yüz Sayısı=6
Yanal Yüz Sayısı=4
Taban Sayısı=2
Köşe Sayısı=8
Yanal Ayrıt Sayısı=4
Taban Ayrıt Sayısı=8
Toplam Ayrıt Sayısı=12
Tabanlar ve yanal yüzler dikdörtgendir.

Üçgen Dik Prizma
2 Tane üçgensel,3 tane dikdörtgensel bölgenin birleşmesi sonucu meydana gelen prizmaya üçgen dik prizma denir.Çatıları örnek verebiliriz.

Üçgen Dik Prizmanın Özellikleri:
Yüz Sayısı=5
Yanal Yüz Sayısı=3
Taban Sayısı=2
Köşe Sayısı=6
Yanal Ayrıt Sayısı=3
Taban Ayrıt Sayısı=6
Toplam Ayrıt Sayısı=9
Tabanlar üçgen,yanal yüzler dikdörtgendir
.

Altıgen Dik Prizma
2 Tane altıgensel,6 tane dikdörtgensel bölgenin birleşmesi sonucu meydana gelen prizmaya altıgen dik prizma denir.Arı peteklerini örnek verebiliriz.

Altıgen Dik Prizmanın Özellikleri:
Yüz Sayısı=8
Yanal Yüz Sayısı=6
Taban Sayısı=2
Köşe Sayısı=12
Yanal Ayrıt Sayısı=6
Taban Ayrıt Sayısı=12
Toplam Ayrıt Sayısı=18
Tabanlar altıgen,yanal yüzler dikdörtgendir.

Beşgen Dik Prizma
2 Tane beşgensel,5 tane dikdörtgensel bölgenin birleşmesi sonucu meydana gelen prizmaya beşgen dik prizma denir.

Beşgen Dik Prizmanın Özellikleri:
Yüz Sayısı=7
Yanal Yüz Sayısı=5
Taban Sayısı=2
Köşe Sayısı=10
Yanal Ayrıt Sayısı=5
Taban Ayrıt Sayısı=10
Toplam Ayrıt Sayısı=15
Tabanlar beşgen,yanal yüzler dikdörtgendir
.

EĞİK PRİZMALAR
Tabanları herhangi bir çokgensel bölge,yan yüzleri paralelkenarsal bölge olan cisimlere eğik prizma denir.Tabanları birleştiren yanal ayrıtlar tabanlara dik değildir.Eğik prizmalarda yan yüzler paralelkenardır.

DİK DAİRESEL SİLİNDİR NEDİR?

Silindir geometrik bir cisimdir.

  • Hacmi: V = pi cdot r^2 cdot h
  • Yüzey alanı: A = 2 pi r^2 + 2 pi r h = 2 pi r ( r + h ).,

Bir dikdörtgenin bir kenarı etrâfında döndürülmesiyle elde edilir. Bu silindire dik veya eğik silindir denir. Alt ve üst tabanı dâiredir. Soba borusu dik silindire bir örnektir.

SİLİNDİR'İN ALANI:
A = yanal alan + 2.taban alan
A = 2.π.r.h + 2.π.r.r
(π=3,14 alırız, r taban yarıçapı, h yükseklik)

Örnek: Taban yarıçapı 1cm ve yüksekliği 4cm olan silindirin alanını bulunuz.(π=3)
A= 2.3.1.4+2.3.1.1= 24+6= 30cmkare

SİLİNDİR'İN HACMİ:
H = taban alan.yükseklik
H = π.r.r.h
(π=3,14 alırız, r taban yarıçapı, h yükseklik)
(konserve tenekesi) 

Örnek: Taban yarıçapı 4cm ve yüksekliği 5cm olan silindirin hacmini bulunuz.(π=3)
H= 3.4.4.5= 240cmküp

Silindirin Açınımı ve Açık Şekli


• İlketkinlik Online Test Merkezi

• İlketkinlik Eğlence Merkezi

SON EKLENEN YAZILAR
7. Sınıf Fen ve Teknoloji Kuvvet ve Hareket Değerlendirme Testi Etkinliği7. Sınıf Fen ve Teknoloji Sürtünme Kuvveti Etkinliği7. Sınıf Fen ve Teknoloji Kuvvet ve Hareket Kavram Haritası Etkinliği7. Sınıf Fen ve Teknoloji Kaldıraçlar ve Hayatımızdaki Kaldıraçlar Etkinlikleri7. Sınıf Fen ve Teknoloji Kinetik Enerji ve Potansiyel Enerji Etkinlikleri
3. Sınıf Türkçe Büyük Ünlü Uyumu Kuralı Etkinliği3. Sınıf Matematik Normal ve Onluk Bozarak Çıkarma İşlemi Etkinliği4. Sınıf İngilizce 3. Ünite ( free time ) Kelimeleri2. Sınıf Türkçe Sıfat Özet Konu ve Alıştırma Sayfası7. Sınıf Çemberde Açılar ve Yaylar Alıştırmaları
7. Sınıf Matematik Dörtgenler Çalışma Sayfaları3. Sınıf Türkçe Türemiş Sözcükleri Kök ve Yapım Eklerine Ayırma3. Sınıf Türkçe Dilbilgisi özel - cins isim, basit - türemiş - bileşik kelimeler Testi7. Sınıf Fen ve Teknoloji Yaylar Doğru Yanlış, Boşluk Doldurma Etkinliği7. Sınıf Sosyal Bilgiler Ülkemizde Nüfus Boşluk Doldurma, Doğru Yanlış Etkinliği
TEOG Sınavı Yaka Kartı24 Kasım Öğretmenler Günü Konuşma Metni4. Sınıf İngilizce This ve These Çalışma Sayfası4. Sınıf İngilizce Can ve Can't Çalışma Sayfası7. Sınıf Din ve Güzel Ahlak Değerlendirme Testi ve Bulmaca
7. Sınıf İslam Düşüncesinde Yorumlar Değerlendirme Testi ve Bulmaca7. Sınıf Bir İnsan ve Peygamber Olarak Hz. Muhammed Değerlendirme EtkinliğiHz. Ali'nin Hz. Hasan'a Öğüdü Okuma Metni6. Sınıf İslamın Sakınılmasını İstediği Bazı Davranışlar Değerlendirme Testi6. Sınıf İslamın Sakınılmasını İstediği Bazı Davranışlar Bulmacası

Sitemiz, hukuka, yasalara, telif haklarına ve kişilik haklarına saygılı olmayı amaç edinmiştir. Sitemiz, 5651 sayılı yasada tanımlanan yer sağlayıcı olarak hizmet vermektedir. İlgili yasaya göre, site yönetiminin hukuka aykırı içerikleri kontrol etme yükümlülüğü yoktur. Bu nedenle, sitemiz uyar ve kaldır prensibini benimsemiştir. Telif hakkına konu olan eserlerin yasal olmayan bir biçimde paylaşıldığını ve yasal haklarının çiğnendiğini düşünen hak sahipleri veya meslek birlikleri, fatih(at)ilketkinlik.com mail adresinden bize ulaşabilirler. Şikayet yerinde görüldüğü takdirde ihlal olduğu düşünülen içerikler sitemizden kaldırılacaktır. Sitemiz hiçbir şekilde kar amacı gütmemektedir ve sitemizde yer alan tüm materyaller yalnızca bilgilendirme ve eğitim amacıyla sunulmaktadır.

Üst

Sözlük
  • dictionary
  • sözlük
  • İngilizce Türkçe Sözlük

Sayfa üzerindeki bir kelimeye çift tıkla yada bir kelime yaz:

Powered by DictionaryBox