liste
liste1

Matematikte Kullanılan Sembollerin Tarihi

Ekleyen: ilketkinlik | Okunma Sayısı: 1874

Pİ SAYISI
Eski çağlarda yaklaşık değeri 3 olarak düşünülen pi sayısı bir dairenin çevresinin çapına olan oranını ifade eder.Arşimet pi sayısının değerini bulmak için çok istekli idi.Bu değerin 3 1/7 ile 3 10/71 arasında olduğunu gösterdi.
Daha sonra pek çok matematikçi pi sayısı için daha yakın değerde bulmaya çalıştılar. Wallis (1616 -1703 ) pi sayısını gösteren

   p              2n .2n
-------- = -----------------------------------------
   2              (2n-1).(2n-1)

yaklaşımını buldu.
Gregory(1638 -1676) pi sayısı için sonsuz terimli bir seri ortaya koydu.
p/4 = 1-1/3 +1/5-1/7+1/9-1/11+...........
Babilliler : 3 1/8
Mısırlılar : (16/9)^2 =3.1605
Çinliler : 3
Batlamyos :377/120
Fibonacci :3.141818

 

EŞİTTİR İŞARETİ

Eşittir işareti günümüzdekine benzer şekli ile ilk kez 1557 yılında Galli matematikçi Robert Recorde (1510–1558) tarafından kullanılmış olan işarettir.
Tarihçe:
16. yüzyıla kadar bütün matematikçiler kendilerine has eşittir işaretleri kullanırlardı ve ortak bir gösterim biçimi olmaması birbirlerini anlamalarını zorlaştırmaktaydı. Emre Robert Recorde 1557 tarihli The Whetstone of Witte adlı yapıtında : "Eşittir sözcüğünü bıktırıcı bir biçimde tekrar tekrar kullanmaktansa genelde çalışırken yaptığım gibi paralel iki çizgi koyacağım , çünkü paralel iki çizgiden daha eşit bir şey olamaz" diyerek ilk kez kullanmıştır.

 

ARTI VE EKSİ İŞARETLERi
Daha önce matematikçiler tarafından çeşitli şekillerde kullanılan artı ve eksi işaretleri,bu işaretlerin kullanımını ve yapılan çalışmaları detaylı olarak gözlemleyen Francis Vieta (1540-1603) tarafından toplama ve çıkarma işaretleri olarak kullanılmıştır.


BÖLME İŞARETİ
Bölme sembolü; John Wallis (1616-1703) yılında adapte edilmiş , İngiltere’ de ve Amerika’ da kullanılmıştır. (fakat Avrupa’ da ( iki nokta üst üste kullanılıyordu.)
1923 yılında, Matematik Komitesi açıkladı ki: ne : ne de ? işaretleri tam olarak kullanılıyor veya kullanılmıyor.
Bölüm (-) işaretinin iş hayatında çok önemli bir anlamı olmadığına göre bunu matematiğe (kesirli ifadelere ) adapte edelim ve noktaların arasında “/ ” ‘ u kullanalım. Bundan sonra ? işareti matematiksel bir ifade haline dönüştü.


ÇARPMA İŞARETİ
William Oughtred (1574-1660) matematikte sembollerin kullanımına çok önem vermiş ve kendi çalışmalarında 150 ye yakın sembol kullanmıştır.Bunlardan günümüze yalnızca 3 tanesi gelmiştir.Bunlardan bir tanesi de çarpma işaretidir. Oughtred çarpma işareti olarak “X”i kullanmıştır.Daha sonraki tarihlerde ünlü matematikçi Leibniz (1646-1715) Oughtred’in kullandığı bu sembolün harf olan “X” ile kolaylıkla karışabileceğini söyleyerek çarpma işlemlerinde nokta(.) kullanmıştır.Günümüze de bu iki sembol çarpma işleminin sembolleri olarak gelmiştir.


EŞİTTİR İŞARETİ(=)
Eşittir işareti günümüzdekine benzer şekli ile ilk kez 1557 yılında Galli matematikçi Robert Recorde (1510–1558) tarafından kullanılmış olan işaretttir.
16. yüzyıla kadar bütün matematikçiler kendilerine has eşittir işaretleri kullanırlardı ve ortak bir gösterim biçimi olmaması birbirlerini anlamalarını zorlaştırmaktaydı. Emre Robert Recorde 1557 tarihli The Whetstone of Witte adlı yapıtında : "Eşittir sözcüğünü bıktırıcı bir biçimde tekrar tekrar kullanmaktansa genelde çalışırken yaptığım gibi paralel iki çizgi koyacağım, çünkü paralel iki çizgiden daha eşit bir şey olamaz" diyerek ilk kez kullanmıştır.
Günümüzdeki "=" işaretinin biraz uzun hali olan bu işaretin özgün hali aşağıda verilen dış bağlantıda görülebilir.


Pİ SAYISI
Yunan alfabesinin 16. harfidir. Bu harf, aynı zamanda, Yunanca çevre (çember) anlamına gelen "perimetier" kelimesinin de ilk harfidir. İsviçreli matematikçi Leonard Euler, 1737 yılında yayınladığı eserinde, daire çevresinin çapına oranı söz konusu olduğunda, bu sembolü kullandı. Leonard Euler'den önce gelen bazı matematikçiler tarafından da, bu sembol kullanılmıştır. Ancak, Leonard Euler'den sonra gelen, tüm matematikçiler bu sembolü benimseyip kullandılar.


FAKTÖRYEL SEMBOLÜ(n!)
1808 yılında Christian Kramp of Strassbourg tarafından geliştirilmiştir.Bu sembol şu anda da matematikte 1808 yılında Christian Kramp of Strassbourg ‘un kullandığı şekliyle kullanılmaktadır.


BENZER VE YAKLAŞIK SEMBOLLERİ
Geometrideki tanıdık sembollerden olan benzer (solda) ve yaklaşık (sağda) sembolleri Leibniz tarafından bulunmuştur.
Leibniz matematik gösterimlerine katkıda bulunan en önemli kişilerden birisidir.


AÇI İŞARETİ
Tarihte açıyı sembol olarak gösteren il kişi 1634 yılındaki çalışmasıyla Pierre Herigone olmuştur.Herigone açı sembolü olarak şimdi “küçüktür(<)” olarak kullanılan sembolü kullanmıştır.Daha sonra 1750 yılında İngiltere’de bugün kullandığımız sembol ortaya çıkmıştır. Bu işaret 1923’te sponsorluğunu Mathematical Association of America’ nın yaptığı Milli Matematik İhtiyaçları Komitesi tarafından Amerika Birleşik Devletleri’nin standart açı sembolü olarak önerildi ve dünya genelinde de bu şekilde kullanılmaya başlanmıştır.


DİK AÇI İŞARETİ
Dik açı sembolü ilk olarak 1968 yılında Samuel Reyher tarafından kullanılmıştır.


YÜZDE İŞARETİ
Yüzde işareti 15. Yüzyılın sonlarından itibaren bilgisayar, kar-zarar, vergi problemlerinde kullanılmaktadır.Ancak bu işaretin tarihi Roma imparatoru Augustus’un açık artırmada satılan tüm mallara 1/100 oranında vergi koyduğu zamanlara kadar dayanır.Diğer Roma vergileri ;her serbest köle için 1/20 ve her satılan köle için 1/25 idi.Onlar yüzdeleri tanımadan kesirleri kolaylıkla kullanabiliyorlardı.


EŞİTSİZLİK İŞARETİ
İlk olarak Thomas Harriot (1560-1621) tarafından bugün “küçüktür(<)” ve büyüktür(>) olarak kullanılan işaretler eşitsizlik işareti olarak kullanılmıştır.Bu işaretler bazı bilim adamları tarafından önerilse de hemen kabul edilmemiştir.Daha sonra William Oughtred (1574-1660) eşittir işareti yerine kullanılan başka bir sembol geliştirdi.Ancak bu sembolde kabul görmedi ve Isaac Barrow (1630-1677) 1674 yılında farklı bir sembol daha geliştirmiştir.Son olarak eşitsizlik işareti Pierre Bouguer (1698-1758) tarafından 1734 yılında günümüzde kullanılan haliyle geliştirilmiştir.


SONSUZ İŞARETİ
Bu sembol İngiltere’de zamanının en orijinal matematikçisi olarak adlandırılan John Wallis (1616-1703) tarafından bulunmuş ve onun en iyi işi olarak görülen ve1655 yılında yayımlanan Arithmetica Infinitorum adlı eserinde yer almıştır.Romalılar bu işareti BİN sayısı yerine Yunanlılar ise ON BİN sayısı yerine kullandılar.Günümüzde ise sonsuz sayıları ifade etmek için kullanılırlar.

• İlketkinlik Online Test Merkezi

• İlketkinlik Eğlence Merkezi

SON EKLENEN YAZILAR
KADIN ÜST GİYSİLERİ DİKİMİ KURS PLANIANA DİLDE İLETİŞİM KURS PLANI12. sınıf Nesne tabanlı programlama 1. dönem 2. yazılı soruları 2017 - 201810. sınıf programlama temelleri 1. dönem 2. yazılı sınavı 2017 - 201810. sınıf paket programlar 1. dönem 2. uygulama sınavı 2017 - 2018
11. Sınıf Web tasarımı ve programlama 1. dönem 2. uygulama sınavı 2017 - 201811. Sınıf Veritabanı Organizasyonu 1. dönem 2. yazılı sınavı 2017 - 2018Derslerde Başarılı Olmak İçin Ne Yapmalıyım2017 - 2018 Web tasarımı ve programlama BEP Yıllık Planı2017 - 2018 Veritabanı Organizasyonu BEP Yıllık Planı
2017 - 2018 Temel Elektronik ve Ölçme BEP Yıllık Planı2017 - 2018 Bilişim Teknik Resmi BEP Yıllık Planı2017 - 2018 Programlama Temelleri BEP Yıllık Planı2017 - 2018 Paket Programlar BEP Yıllık Planı2017 - 2018 Grafik ve Animasyon BEP Yıllık Planı
2017 - 2018 Bilişim Teknolojilerinin Temelleri BEP Yıllık PlanıNesne Tabanlı Programlama 1. dönem 1. yazılı (3 saatlik)İnternet programcılığı 1. dönem 1. yazılı 2017 - 20182017 - 2018 Paket programlar yıllık planı2017 - 2018 Nesne tabanlı programlama yıllık planı ( 3 saatlik )
2017 - 2018 Programlama temelleri yıllık planı ( 3 ve 4 saatlik )2017 - 2018 Temel elektronik ve ölçme yıllık planı2017 - 2018 Veritabanı organizasyonu yıllık planı ( 2 - 3 saatlik )2017 - 2018 Web tasarımı ve programlama yıllık planı ( 10 - 12 saatlik )2017 - 2018 Mesleki yabancı dil yıllık planı

Sitemiz, hukuka, yasalara, telif haklarına ve kişilik haklarına saygılı olmayı amaç edinmiştir. Sitemiz, 5651 sayılı yasada tanımlanan yer sağlayıcı olarak hizmet vermektedir. İlgili yasaya göre, site yönetiminin hukuka aykırı içerikleri kontrol etme yükümlülüğü yoktur. Bu nedenle, sitemiz uyar ve kaldır prensibini benimsemiştir. Telif hakkına konu olan eserlerin yasal olmayan bir biçimde paylaşıldığını ve yasal haklarının çiğnendiğini düşünen hak sahipleri veya meslek birlikleri, fatih(at)ilketkinlik.com mail adresinden bize ulaşabilirler. Şikayet yerinde görüldüğü takdirde ihlal olduğu düşünülen içerikler sitemizden kaldırılacaktır.Sitemiz hiçbir şekilde kar amacı gütmemektedir ve sitemizde yer alan tüm materyaller yalnızca bilgilendirme ve eğitim amacıyla sunulmaktadır.

üst